New Inequalities Associated with the Euler-Mascheroni Constant

Jenica Cringanu

Abstract

In this paper we propose new sequence approximating the Euler-Mascheroni constant which converge faster towards its limit and we establish better bounds in inequalities for the Euler constant.

Keywords: Sequence, Convergence, Euler-Mascheroni constant MSC2010: 40A05, 33B15, 11Y60

I. INTRODUCTION

It is well known that the sequence
$\gamma_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n, n \geq 1$,
is convergent to a limit denoted $\gamma=0,5772 \ldots$ now known as Euler-Mascheroni constant. Many authors have obtained different estimations for $\gamma_{n}-\gamma$, for exemple the following increasingly better

$$
\begin{aligned}
& \frac{1}{2(n+1)} \leq \gamma_{n}-\gamma<\frac{1}{2(n-1)}, n \geq 2 \\
& \frac{1}{2(n+1)}<\gamma_{n}-\gamma<\frac{1}{2 n}, n \geq 1, \\
& \frac{1-\gamma}{n}<\gamma_{n}-\gamma<\frac{1}{2 n}, n \geq 1,
\end{aligned}
$$

[2]

$$
\begin{align*}
& \frac{1}{2 n+1}<\gamma_{n}-\gamma<\frac{1}{2 n}, n \geq 1, \tag{6,7}\\
& \frac{1}{2 n+\frac{2}{5}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}}, n \geq 1, \tag{10}\\
& \frac{1}{2 n+\frac{2 \gamma-1}{1-\gamma}} \leq \gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}}, n \geq 1 . \tag{1,10}
\end{align*}
$$

The convergence of the sequence γ_{n} to γ is very slow. In 1993, DeTemple [4] studied a modified sequence which converges faster and he proved:

$$
\frac{1}{24(n+1)^{2}}<R_{n}-\gamma<\frac{1}{24 n^{2}}, n \geq 1
$$

where $R_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln \left(n+\frac{1}{2}\right)$.

In 2010, Chen [3] proved that for all integers $n \geq 1$,

$$
\frac{1}{24(n+a)^{2}} \leq R_{n}-\gamma<\frac{1}{24(n+b)^{2}}
$$

with the best possible constants
$a=\frac{1}{\sqrt{24\left(-\gamma+1-\ln \frac{3}{2}\right)}}-1=0,55106 \ldots$ and $b=\frac{1}{2}$.
In 1999, A. Vernescu [10] have found a fast convergent sequence to γ, by having the
idea to replace the last term of the harmonic sum. He proved that the sequence
$x_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n-1}+\frac{1}{2 n}-\ln n$, for $n \geq 2$, is strictly increasing and convergent to γ. Moreover,

$$
\frac{1}{12(n+1)^{2}}<\gamma-x_{n}<\frac{1}{12 n^{2}}, n \geq 2 .
$$

Recently, Chen [3] obtained the following bounds for $\gamma-x_{n}$

$$
\frac{1}{12(n+a)^{2}} \leq \gamma-x_{n}<\frac{1}{12(n+b)^{2}}, \quad n \geq 2
$$

with the best possible constants
$a=\frac{1}{\sqrt{12 \gamma-6}}-1=0,038859 \ldots \quad$ and $b=0$.
In 2015 Cringanu [4] obtained the following bounds for $\gamma-x_{n}$:

For every $a>0$ there exists $n_{a} \in N, n_{a} \geq 2$, such that
$\frac{1}{12(n+a)^{2}}<\gamma-x_{n}<\frac{1}{12 n^{2}}$, for all $n_{a} \geq 2$.
Inspired by this result we consider the sequence
$y_{n}=\gamma-x_{n}-\frac{1}{12 n^{2}}$. The tool for measuring the speed of convergence is a result stated by Mortici [5] according to which a sequence x_{n} converging
to zero is the fastest possible when the difference $y_{n}-y_{n+1}$ is the fastest possible. More precisely, if there exists the $\lim _{n \rightarrow \infty} n^{k}\left(y_{n}-y_{n+1}\right)=l$, then $\lim _{n \rightarrow \infty} n^{k-1} y_{n}=\frac{l}{k-1}$. Recent results using this lemma were obtained for example in [2, 6-8].
In our case of y_{n}, we have
$y_{n}-y_{n+1}=\frac{1}{2 n}+\frac{1}{2 n+2}-\ln \left(1+\frac{1}{n}\right)-\frac{1}{2 n^{2}}+$
$+\frac{1}{12(n+1)^{2}}$,
and using a Mac-Laurin growth serie we get
$y_{n}-y_{n+1}=-\frac{1}{30 n^{5}}+O\left(\frac{1}{n^{6}}\right)$,
and so $\lim _{n \rightarrow \infty} n^{5}\left(y_{n}-y_{n+1}\right)=-\frac{1}{30}$.
By the above result we obtain $\lim _{n \rightarrow \infty} n^{4} y_{n}=\frac{l}{k-1}=-\frac{1}{120}$, so that
$\lim _{n \rightarrow \infty} n^{4}\left(\gamma-x_{n}-\frac{1}{12 n^{2}}\right)=-\frac{1}{120}$.
Let $K_{n}=x_{n}+\frac{1}{12 n^{2}}$, and so
$\lim _{n \rightarrow \infty} n^{4}\left(K_{n}-\gamma\right)=\frac{1}{120}$.
From this result we prove in this paper that for all $a>0$ there exists $n_{a} \in N$ such that for all $n \geq n_{a}$ we have
$\frac{1}{120(n+a)^{4}}<K_{n}-\gamma<\frac{1}{120 n^{4}} \quad$ for all $n \geq n_{a}$, using an elementary sequence method.

II. THE MAIN RESULT

Theorem 2.1. (i) For every integer $n \geq 1$ we have

$$
K_{n}-\gamma<\frac{1}{120 n^{4}} ;
$$

(ii) For every $a>0$ there exists $n_{a} \in N$ such that

$$
\frac{1}{120(n+a)^{4}}<K_{n}-\gamma \text { for all } n \geq n_{a} .
$$

Proof. We define the sequence
$a_{n}=K_{n}-\gamma-\frac{1}{120(n+a)^{4}}=1+\frac{1}{2}+\ldots+\frac{1}{n-1}+$
$+\frac{1}{2 n}-\ln n+\frac{1}{12 n^{4}}-\gamma-\frac{1}{120(n+a)^{4}}$,
for $a \geq 0$, and so $a_{n+1}-a_{n}=f(n)$, where
$f(n)=\frac{1}{2 n}+\frac{1}{2 n+2}-\ln (n+1)+\ln n+\frac{1}{12(n+1)^{2}}-$

$$
-\frac{1}{12 n^{2}}-\frac{1}{120(n+a+1)^{4}}+\frac{1}{120(n+a)^{4}} .
$$

The derivative of function f is equal to

$$
\begin{aligned}
& f^{\prime}(n)=-\frac{1}{2 n^{2}}-\frac{1}{2(n+1)^{2}}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{6(n+1)^{3}}+ \\
& +\frac{1}{6 n^{3}}+\frac{1}{30(n+a+1)^{5}}-\frac{1}{30(n+a)^{5}}= \\
& =\frac{P(n)}{30 n^{3}(n+1)^{3}(n+a)^{5}(n+a+1)^{5}}, \text { where } \\
& \quad P(n)=30 a n^{9}+5\left(39 a^{2}+27 a-1\right) n^{8}+ \\
& \quad+10\left(58 a^{3}+78 a^{2}+23 a-2\right) n^{7}+ \\
& +\left(1045 a^{4}+2030 a^{3}+1210 a^{2}+175 a-31\right) n^{6}+ \\
& +\left(1260 a^{5}+3135 a^{4}+2710 a^{3}+900 a^{2}+45 a-23\right) n^{5}+ \\
& \quad+\left(1050 a^{6}+3150 a^{5}+3485 a^{4}+1700 a^{3}+\right. \\
& \left.\quad+315 a^{2}-10 a-8\right) n^{4}+ \\
& \quad+\left(600 a^{7}+2100 a^{6}+2800 a^{5}+1745 a^{4}+\right. \\
& \left.\quad+490 a^{3}+40 a^{2}-5 a-1\right) n^{3}+ \\
& +25 a^{3}\left(9 a^{5}+36 a^{4}+56 a^{3}+42 a^{2}+15 a+2\right) n^{2}+ \\
& +25 a^{4}\left(2 a^{5}+9 a^{4}+16 a^{3}+14 a^{2}+6 a+1\right) n+ \\
& \quad+5 a^{5}\left(a^{5}+5 a^{4}+10 a^{3}+10 a^{2}+5 a+1\right) .
\end{aligned}
$$

(i) If $a=0$ then
$P(n)=-5 n^{8}-20 n^{7}-31 n^{6}-23 n^{5}-8 n^{4}-n^{3}<0$, for all $n \geq 1$, and then f is strictly decreasing.

We have $f(\infty)=0$ and then $f(n)>0$ for all $n \geq 1$, so that $\left(a_{n}\right)_{n \geq 1}$ is strictly increasing. Since $\left(a_{n}\right)$ converges to zero it results that $a_{n}<0$ for all $n \geq 1$, so that

$$
K_{n}-\gamma<\frac{1}{120 n^{4}}, \quad \text { for all } n \geq 1
$$

(ii) If $a>0$ then there exists $n_{a} \in N$ such that $P(n)>0$ for all $n \geq n_{a}$ and then f is strictly increasing on $\left[n_{a}, \infty\right)$. Since $f(\infty)=0$ it results that $f(n)<0$ for all $n \geq n_{a}$, so that $\left(a_{n}\right)_{n \geq n_{a}}$ is strictly decreasing.

The sequence $\left(a_{n}\right)$ converges to zero and then it results that $a_{n}>0$ for all $n \geq n_{a}$, so that

$$
\frac{1}{120(n+a)^{4}}<K_{n}-\gamma \text { for all } n \geq n_{a} .
$$

Now we find the constant n_{a} in some particular cases.
For exemple, if $a=0,03=\frac{3}{100}$, then

$$
\begin{gathered}
P(n)=\frac{9}{10} n^{9}-\frac{1549}{2000} n^{8}-\frac{619117}{50000} n^{7}- \\
-\frac{492106871}{20000000} n^{6}-\frac{324441563}{15625000} n^{5}-
\end{gathered}
$$

$$
\begin{gathered}
-\frac{159353996791}{20000000000} n^{4}-\frac{549643482989}{500000000000} n^{3}+ \\
+\frac{672122172249}{400000000000000} n^{2}+\frac{483180932133}{20000000000000000} n+ \\
+\frac{2817036000549}{20000000000000000000}>0,
\end{gathered}
$$

for all $n \geq 5$, and so

$$
\frac{1}{120\left(n+\frac{3}{100}\right)^{4}}<K_{n}-\gamma<\frac{1}{120 n^{4}} \text { for all } n \geq 5 \text {. }
$$

[7] C. Mortici, A. Vernescu, An improvement of the convergence speed of the sequence $\$(\backslash$ gamma_n)_\{ $n \backslash g e q 1\} \$$ converging to Euler's constant, An. Stiint. Univ. "Ovidius" Constanta 13 (1) (2005) 97-100.
[8] C. Mortici, A. Vernescu, Some new facts in discrete asymptotic analysis, Math. Balkanica (NS) 21 (Fasc. 3-4) (2007) 301-308.
[9] T. Negoi, A faster convergence to the constant of Euler, Gazeta Matematica Seria A 15 (1997) 111-113 (in Romanian).
[10] S. R. Tims, J. A. Tyrrel, Approximate evaluation of Euler's constant, Math. Gaz., 55 (1971) 65-67.
[11] L. Toth, Probem E3432, Amer. Math. Monthly, 98 (3) (1991) 264.
[12] L. Toth and J. Bukor, On the alternating series
\$1-\frac $\{1\}\{2\}+\backslash$ frac $\{1\}\{3\}-$-frac $\{1\}\{4\}+\ldots \$\}$, J. Math. Anal. Appl. 282 (2003) 21-25.
[13] R. M. YOUNG, Euler's constant, Math. Gaz. 75(472) (1991) 187-190.

Let us remark that a direct calculus show that these inequalities hold and for $n=4$, and then

$$
\frac{1}{120\left(n+\frac{3}{100}\right)^{4}}<K_{n}-\gamma<\frac{1}{120 n^{4}} \text { for all } n \geq 4 .
$$

Now, if $a=0,01=\frac{1}{100}$, then

$$
\begin{gathered}
P(n)=\frac{3}{10} n^{9}-\frac{7261}{2000} n^{8}-\frac{881071}{50000} n^{7}- \\
-\frac{582539191}{20000000} n^{6}-\frac{5614314631}{250000000} n^{5}- \\
-\frac{161335296679}{20000000000} n^{4}-\frac{522746133947}{500000000000} n^{3}+ \\
+\frac{21542563609}{40000000000000} n^{2}+\frac{5307080451}{2000000000000000} n+ \\
+\frac{10510100501}{2000000000000000000}>0,
\end{gathered}
$$

for all $n \geq 17$, and so

$$
\frac{1}{120\left(n+\frac{1}{100}\right)^{4}}<K_{n}-\gamma<\frac{1}{120 n^{4}} \text { for all } n \geq 17
$$

Let us remark that a direct calculus show that these inequalities hold and for $n \in\{12,13,14,15,16\}$, and then

$$
\frac{1}{120\left(n+\frac{1}{100}\right)^{4}}<K_{n}-\gamma<\frac{1}{120 n^{4}} \text { for all } n \geq 12 .
$$

References

[1] H. Alzer, Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg 68 (1998) 363-372.
[2] G.D. Anderson, R.W. Barnard, K.C. Richards, M.K. Vamanamurthy, M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 345 (1995) 1713-1723.
[3] C.P. Chen, Inequalities for the Euler-Mascheroni constant, Applied Mathematics Letters 23 (2010) 161-164;
[4] J. Cringanu, Better bounds in Chen's inequalities for the Euler constant, Bull. Aust. Math. Soc. Vol 92, No 1 (2015) pp 94-97.
[5] D.W. DeTemple, A quicker convergence to Euler's constant, Amer. Math. Monthly 100 (5) (1993) 468-470;
[6] C. Mortici, On new sequences converging towards the
Euler-Mascheroni constant, Computers and Mathematics with Applications 59 (2010) 2610-2614.

Jenica Cringanu, Associate Professor „Dunarea de Jos" University of Galati, Romania,
Dean of the Faculty „Science and Environment".

Works list:

http://www.math.ugal.ro/siteFacStiint e/cadre_did/Lucrari/cringanu-lucrari.p df

